Federated Learning in Mobile Edge Networks: A Comprehensive Survey
نویسندگان
چکیده
منابع مشابه
Reinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملCall admission control in mobile cellular networks: a comprehensive survey
Call admission control is a key element in the provision of guaranteed quality of service in wireless networks. The design of call admission control algorithms for mobile cellular networks is especially challenging given the limited and highly variable resources, and the mobility of users encountered in such networks. This article provides a survey of admission control schemes for cellular netw...
متن کاملNeural Networks in Electric Load Forecasting:A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...
متن کاملreinforcement learning in neural networks: a survey
in recent years, researches on reinforcement learning (rl) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. neural network reinforcement learning (nnrl) is among the most popular algorithms in the rl framework. the advantage of using neural networks enables the rl to search for optimal policies more efficiently in several real-life applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Communications Surveys & Tutorials
سال: 2020
ISSN: 1553-877X,2373-745X
DOI: 10.1109/comst.2020.2986024